BTC50010-1TAA

Smart High-Side Power Connector
Single Channel, $1 \mathrm{~m} \Omega$

Data Sheet
1.3, 2015-02-06

Table of Contents

Table of Contents 2
1 Overview 3
2 Block Diagram 5
3 Pin Configuration 6
3.1 Pin Assignment 6
3.2 Pin Definitions and Functions 6
$3.3 \quad$ Voltage and Current Definition 7
4 General Product Characteristics 8
4.1 Absolute Maximum Ratings 8
4.2 Functional Range 11
4.3 Thermal Resistance 13
5 Functional Description 14
5.1 Power Stage 14
5.1.1 Output ON-State Resistance 14
5.1.2 Switching an Inductive Load 14
5.2 Gate Driver Functionality 16
5.3 Undervoltage Protection 17
5.4 Overvoltage Protection 18
5.5 Protection during Loss of Load or Loss of V_{S} Condition 18
5.6 Inverse Current Capability 19
5.7 Reverse Polarity Protection 20
5.8 Electrical Characteristics 21
6 Application Information 25
6.1 Information for Application Combining PWM Mode with Fuse 26
6.2 Information for Driving Capability of Charge Pump Pin after Switch ON 27
6.3 Further Application Information 27
$7 \quad$ Package Outlines 28
8 Revision History 29

High-Side Power Connector

1 Overview

Applications

- Switching resistive, capacitive and inductive loads in conjunction with an effective peripheral free wheeling circuit
- Replaces electromechanical relay
- Most suitable for high current applications, such as Start-Stop, power distribution, main switch, heating systems
- PWM application with low frequencies

PG-TO-263-7-8

Features

- Load or Supply Line switching up to 30 A DC
- Operating temperature up to $150^{\circ} \mathrm{C}$
- Current controlled Input pin
- Low Stand-by current
- Single channel 1mOhm power stage device with gate driver output for driving external MOSFET, easily combine with external MOSFET for reverse blocking or to halve the $R_{\mathrm{DS}(\mathrm{ON})}$ (with BTC30010-1TAA). Auxiliary gate driver output for driving additional external MOSFET (optimized for BTC30010-1TAA).
- Electrostatic discharge protected (ESD)
- Optimized Electro Magnetic Compatibility (EMC)
- Very low power consumption in ON state
- Compatible to cranking pulse requirement (test pulse 4 in ISO7637 and cold start pulse in LV124)
- Infineon ${ }^{\circledR}$ Reversave ${ }^{\text {TM }}$: Reverse battery protection by self turn ON of the power MOSFET
- Inverse operation robustness capability
- Infineon ${ }^{\circledR}$ SMART CLAMPING
- Green Product (RoHS compliant, halogen free package)
- AEC Qualified
- Dustproof

Description

The BTC50010-1TAA is a High-Side Power Connector optimized to replace electromechanical relays. It offers switching without audible noise, low conductive losses, weight reduction and increased switching cycle capability to comply with upcoming requirements on power distribution applications such as load or battery disconnect

Type	Package	Marking
BTC50010-1TAA	PG-TO-263-7-8	C50010A

Overview

switch. In addition, it significantly reduces power/current consumption of the device while ON to increase energy efficiency. It offers the possibility to drive an additional power MOSFET or BTC30010-1TAA via its CP pin to support reverse blocking or to halve the $R_{\mathrm{DS}(\mathrm{ON})}$. The device can withstand cranking pulses such as test pulse 4 in ISO7637 and cold start pulse in LV124.

Table 1 Product Summary

Parameter	Symbol	Values
Weight (approx.)	G	1.5 g
Nominal operating voltage	$V_{\mathrm{S}(\mathrm{OP})}$	$8 \mathrm{~V} \ldots 18 \mathrm{~V}$
Extended operating voltage contains dynamic undervoltage capability	$V_{\mathrm{S}(\mathrm{DYN})}$	$3.2 \mathrm{~V} \ldots 28 \mathrm{~V}$
Nominal load current	$I_{\mathrm{L}(\mathrm{NOM})}$	30 A
Typical ON-state resistance at $T_{\mathrm{J}}=25^{\circ} \mathrm{C}(\mathrm{CP}$ pin open)	$R_{\mathrm{DS}(\mathrm{ON})}$	$0.9 \mathrm{~m} \Omega$
Typical input current in ON state	$I_{\mathrm{IN}(\mathrm{ON})}$	2 mA
Typical stand-by current at $T_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$I_{\mathrm{S}(\mathrm{OFF})}$	$3 \mu \mathrm{~A}$

Figure 1 Block Diagram

3 Pin Configuration

3.1 Pin Assignment

Figure 2 Pin Configuration

3.2 Pin Definitions and Functions

Pin	Symbol	Function
1	IN1	IN1; Pull down to module ground for channel activation ${ }^{1)}$
2	IN2	IN2; Pull down to module ground for channel activation ${ }^{1)}$
3	CP	Charge Pump Output; Output pin of internal charge pump voltage
4, Cooling Tab	VS	Supply Voltage; Connected to battery voltage
$5,6,7$	OUT	OUTPUT; High side power output ${ }^{2)}$
1) IN1 and IN2 are internally connected 2) All output pins are connected internally. All output pins have to be connected externally together on PCB. Not shorting all outputs pins will considerably increase the ON-resistance. PCB traces have to be designed to withstand the maximum current which can flow.		

Pin Configuration

3.3 Voltage and Current Definition

Figure 3 shows all terms used in this data sheet, with associated convention for positive values.

Figure 3 Voltage and Current Definition

4 General Product Characteristics

4.1 Absolute Maximum Ratings

Table 2 Absolute Maximum Ratings ${ }^{1)}$

$T_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, all voltages and currents refer to definitions in Figure 3 (unless otherwise specified).

Parameter	Symbol	Values			Unit	Note I Test Condition	Number
		Min.	Typ.	Max.			
Voltages							
Supply Voltage	$V_{\text {S }}$	-0.3	-	28	V	-	P_4.1.1
Voltage from $V_{\text {S }}$ to IN pin	$V_{\text {SIN }}$	-0.3	-	60	V	-	P_4.1.2
Reverse polarity voltage	$V_{\text {S(REV) }}$	-	-	16	V	$\begin{aligned} & t<2 \mathrm{~min} \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & R_{\mathrm{L}} \geq 0.5 \Omega \\ & V_{\text {IN }}=0 \mathrm{~V} \end{aligned}$ Figure 18 Figure 19	P_4.1.3
Supply voltage for load dump protection	$V_{\text {S(LD) }}$	-	-	45	V	$\begin{aligned} & \text { 2) } R_{\mathrm{L}}=1.0 \Omega \\ & R_{\mathrm{IN}}=100 \Omega \end{aligned}$	P_4.1.4
Voltage at CP pin	$V_{\text {CP }}$	-0.3	-	$V_{\text {CP_ON }}$	V	$V_{\text {CP }}=V_{\text {GS_C }}$	P_4.1.5
Voltage from OUT to IN pin $V_{\text {OUTIN }}=V_{\text {OUT }}-V_{\text {IN }}$	$V_{\text {OUT-IN }}$	-64	-	-	V	3)	P_4.1.6

Currents

Current through CP pin	$I_{\text {CP }}$	-20	-	20	mA	for $t<0.5 \mathrm{~ms}$ during switch ON/OFF	P_4.1.7
Device current vs. time capability at: $\begin{aligned} & I_{6.0 _125^{\circ} \mathrm{C}}=0.85 \times 6.0 \times I_{\text {RATE }} \\ & \text { for } I_{\text {RATE }}=30 \mathrm{~A}^{4)} \end{aligned}$	$t @ I_{6.0}$	-	-	0.24	S	${ }^{5)}$ BTC50010-1TAA alone or drive BTC30010-1TAA in anti serial, current level: $\begin{aligned} & I_{6.0 _125^{\circ} \mathrm{C}}=153 \mathrm{~A}, \\ & T_{\mathrm{A}}=125^{\circ} \mathrm{C}, \end{aligned}$ Figure 4	P_4.1.8
Continuous drain current	$I_{\text {D }}$	-	-	163	A	$\begin{aligned} & T_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & V_{\mathrm{IN}}=0 \mathrm{~V}, I_{\mathrm{CP}} \leq 2 \mu \mathrm{~A} \end{aligned}$ Current is limited by bondwire	P_4.1.9

Power Stage

Average power dissipation	$P_{\text {TOT }}$	-	-	160	W	${ }^{6)}$ For $T_{\mathrm{J}(0)} \leq 105{ }^{\circ} \mathrm{C}$	P_4.1.13

Temperatures

Junction Temperature	T_{J}	-40	-	150	${ }^{\circ} \mathrm{C}$	-	$\mathrm{P}_{-} 4.1 .14$
Dynamic Temperature increase while switching	ΔT_{J}	-	-	60	K	-	$\mathrm{P}_{-} 4.1 .15$

General Product Characteristics

Table 2 Absolute Maximum Ratings (cont'd) ${ }^{1)}$
$T_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, all voltages and currents refer to definitions in Figure 3 (unless otherwise specified).

Parameter	Symbol	Values			Unit	Note / Test Condition	Number
		Min.	Typ.	Max.			
Storage Temperature	$T_{\text {STG }}$	-55	-	150	${ }^{\circ} \mathrm{C}$	-	P_4.1.16

ESD Susceptibility

ESD Susceptibility (all pins)	$V_{\text {ESD }}$	-2	-	2	kV	$\mathrm{HBM}^{7)}$	$\mathrm{P}^{7} 4.1 .17$
ESD Susceptibility OUT pin vs. $V_{\text {S }}$	$V_{\text {ESD_out }}$	-4	-	4	kV	$\mathrm{HBM}^{7)}$	P_4.1.18

1) Not subject to production test, specified by design.
2) $V_{\mathrm{S}(\mathrm{LD})}$ is setup without DUT connected to the generator per ISO 7637-1.
3) Relevant to application case such as loss of load, loss of battery (also negative ISO pulse).
4) $I_{\mathrm{Q} _\mathrm{b}-125^{\circ} \mathrm{C}}=\mathrm{a} \times \mathrm{b} \times I_{\text {RATE. "a" is the }}$ temperature re-rating factor from the fuse curve for $125^{\circ} \mathrm{C}$ refer to $25^{\circ} \mathrm{C}$. "b" is the factor of load current to $I_{\text {RATE }}$ at $25^{\circ} \mathrm{C}$.
5) Use test PCB with $2 \times 70 \mu \mathrm{~m}$ Cu layers and size of $54 \times 48 \times 1.5 \mathrm{~mm}$. Where applicable, thermal via array is placed under the device footprint on this PCB. BTC50010-1TAA on PCB has $R_{\mathrm{thJA}(2 \mathrm{P})}=19.6 \mathrm{~K} / \mathrm{W}$ (referring to 1 W power dissipation). PCB is vertical, keep constant environment temperature by indirect airflow of 6L/s.
6) $P_{\text {TOT }}=\left(T_{\mathrm{J}(0)}-T_{\mathrm{C}}\right) / R_{\text {thJc }} \cdot P_{\text {TOT_max }}=\left(105^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) / 0.5 \mathrm{~K} / \mathrm{W}=160 \mathrm{~W}$.
7) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001-2010.

BTC50010-1TAA current robustness:

Below diagram present the current robustness of BTC50010-1TAA. Generally, module thermal characteristic is more depending on the module construction (e.g. PCB size, metal layer thickness and numbers, module connectors) than the thermal characteristic of BTC50010-1TAA alone. When current pulse is longer than 0.3s, influence of module thermal characteristic is dominant. When current pulse is shorter than 0.3 s , influence of thermal characteristic of BTC50010-1TAA is getting significant.
Combining BTC50010-1TAA together with a fuse in application, the total I/t curve of the module (incl. BTC500101TAA) has to be above the fuse I/t curve. With specified test setup ${ }^{1)}$ BTC50010-1TAA can withstand minimum 10 fuse blows of a 30A ATO FUSE.

Figure $4 \quad \mathrm{BTC} 50010$-1TAA Current Robustness at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $T_{\mathrm{A}}=125^{\circ} \mathrm{C} ; V_{\mathrm{S}}=13.5 \mathrm{~V}{ }^{1)}$

Notes

1. Stresses above the ones described in Chapter 4.1 may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
[^0]
General Product Characteristics

2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

4.2 Functional Range

Table 3 Functional Range
$T_{\mathrm{J}}=25^{\circ} \mathrm{C}$, all voltages and currents refer to definitions in Figure 4 (unless otherwise specified).

Parameter	Symbol	Values			Unit	Note I Test Condition	Number
		Min.	Typ.	Max.			
Nominal operating voltage	$V_{\text {S_OP }}$	8	-	18	V	-	P_4.2.1
Extended static operating voltage	$V_{\text {S_OP_EXT }}$	5	-	28	V	${ }^{1)}{ }^{2)} I_{\mathrm{L}} \leq I_{\mathrm{L}(\mathrm{NOM})}$	P_4.2.2
Extended operating voltage contain dynamic undervoltage capability	$V_{\text {S_DYN }}$	3.2	-	28	V	${ }^{1)} V_{S}$ decreasing according to ISO7637 according to LV124	P_4.2.3
Static undervoltage level (start of loss of functionality)	$V_{\text {S_UV }}$	-	-	4.5	V	$R_{\mathrm{L}}=270 \Omega$ V_{S} decreasing $V_{\mathrm{DS}} \leq 0.5 \mathrm{~V}$ $I_{\text {CP_ON }}=0 \mu \mathrm{~A}$ Figure 5	P_4.2.4
Undervoltage restart level static	$V_{\text {S_UV_Restart }}$	-	-	5	V	$R_{\mathrm{L}}=270 \Omega$ V_{S} increasing $V_{\mathrm{DS}} \leq 0.5 \mathrm{~V}$ $I_{\text {CP_ON }}=0 \mu \mathrm{~A}$ Figure 5	P_4.2.5
Charge pump current in ON state (maximum allowed leakage current at CP pin)	$I_{\text {CP_ON }}$		0	2	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V}, t>t_{\mathrm{ON}}$	P_4.2.6
Maximum allowed Current in OFF state IN pins High	$I_{\text {IN_OFF }}$	-	-	30	$\mu \mathrm{A}$	Pull-up current flow through internal current source	P_4.2.7

1) Not subject to production test, specified by design.

Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.

Figure 5 Undervoltage Behavior of BTC50010-1TAA

General Product Characteristics

4.3 Thermal Resistance

Table 4 Thermal Resistance ${ }^{1)}$ at $\boldsymbol{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note I Test Condition	Number
		Min.	Typ.	Max.			
Junction to Case	$R_{\text {thJc }}$	-	-	0.5	K/W	2)	P_4.3.1
Junction to Ambient	$R_{\text {thJA(2S2P) }}$	-	20	-	K/W	2) 3)	P_4.3.2
Junction to Ambient	$R_{\text {thJA(150p) }}$	-	70	-	K/W	2) 4)	P_4.3.3

1) Not subject to production test, specified by design.
2) Device is dissipating 1 W power.
3) Specified $R_{\text {thJA }}$ value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2 s 2 p board; The product (chip + package) was simulated on a $76,4 \times 114,3 \times 1,5 \mathrm{~mm}$ board with 2 inner copper layers ($2 \times 70 \mu \mathrm{~m} \mathrm{Cu}, 2 \times 35 \mu \mathrm{mCu}$). Where applicable, a thermal via array under the exposed pad contacted the first inner copper layer.
4) Specified R_{thJA} value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 1s0p board; The product (chip + package) was simulated on a $76,4 \times 114,3 \times 1,5 \mathrm{~mm}$ board with 1 copper layer ($1 \times 70 \mu \mathrm{~m} \mathrm{Cu}$).

Figure 6 is showing the typical thermal impedance of BTC50010-1TAA mounted on different PCB setup on FR4 1s0p (single layer) and 2 s 2 p (quad layer) boards at T_{J} of $25^{\circ} \mathrm{C}$ and $105^{\circ} \mathrm{C}$ according to Jedec JESD51-2,-5,-7 at natural convection.

Figure $6 \quad$ Typical Transient Thermal Impedance $Z_{\mathrm{th}(\mathrm{JA})}=f(\mathrm{t})$ for Different Cooling Areas

5 Functional Description

$5.1 \quad$ Power Stage

5.1.1 Output ON-State Resistance

The ON-state resistance $R_{\mathrm{DS}(\mathrm{ON})}$ depends on the supply voltage as well as the junction temperature T_{J}. Figure 16 shows the dependencies in terms of temperature and supply voltage, for the typical ON-state resistance. The behavior in reverse polarity is described in Chapter 5.7.
A LOW signal (see Chapter 5.2) at the input pin causes a current $I_{\text {IN }}$ flowing internally from the V_{S} pin out of the IN pin to the module Ground, thus the power DMOS is switched ON with a dedicated slope, which is optimized in terms of EMC emission.

5.1.2 Switching an Inductive Load

When switching OFF inductive loads with high side switches, the voltage $V_{\text {OUT }}$ is driven below ground potential, due to the fact that the inductance intends to continue driving the current. To prevent the destruction of the device due to high voltages, the device implements an overvoltage protection, which clamps the voltage between VS and VOUT at $V_{\mathrm{DS}(\mathrm{CL})}$ (see Figure 7).
Nevertheless it is not recommended to operate the device repetitively under this condition. Therefore, when driving inductive loads, a free wheeling diode must be always placed.

Figure 7 Overvoltage Clamp

Figure 8 Switching an Inductance with or without free wheeling diode
It is important to verify the effectiveness of the freewheeling solution (see Figure 8), which means the selection of the proper diode and of an appropriate free wheeling path. With regard to the choice of the free wheeling diode, low threshold and fast response are key parameter to achieve an effective result.
Moreover the diode should be placed in order to have the shortest wire connection with the load (see Figure 9).

Figure 9 Optimization of the free wheeling path

5.2 Gate Driver Functionality

BTC50010-1TAA has an embedded gate driver. It is used to drive the gate of an integrated power DMOS. The gate driver charges and discharges the gate of the DMOS with current $I_{\text {CHARGE }}$ and $I_{\text {DISCHARGE }}$. Refer to Figure 10, the gate driver is accessible via the CP pin. BTC50010-1TAA is suitable for driving an external MOSFET (e.g. BTC30010-1TAA) in parallel to halve the connect resistance or in anti serial to block the reverse current. It allows also to connect a capacitor C_{CP} to buffer the V_{CP} voltage during cranking time.

Figure 10 Gate Driver Block Diagram
During Switch ON, BTC50010-1TAA charges the Gate capacitor of an external DMOS or the capacitor C_{CP} which is connected between CP and OUT pin. During switch OFF, when VOUT decreases to around 2.5 V below V_{S}, the internal switch S_{1} between gate and source will switch ON to reduce the high energy consuming switch OFF time. Additionally, when S_{1} is switched ON, the device is much more robust against electromagnetic disturbance which could come from V_{S} or output pin to ensure the device doesn't suffer from an unwanted switch ON.

Figure 11 Switch ON and OFF Timing
Note: Figure 11 shows the general switching behavior. Under real condition, voltage or current sketch deviation is possible.

5.3 Undervoltage Protection

Below $V_{S_{S} u v}$ maximum value, the under voltage condition is met. Upon further decrease of V_{S}, the device will begin to lose functionality, until finally it will turn OFF. During V_{S} increasing, as soon as the supply voltage is above the static level $V_{\text {S_UV_Restart }}$, device can be switched ON. Figure 5 sketches the undervoltage mechanism.

5.4 Overvoltage Protection

The BTC50010-1TAA provides Infineon ${ }^{\circledR}$ SMART CLAMPING functionality, which suppresses over voltages by actively clamping the overvoltage across the power stage and the load. This is achieved by controlling the clamp voltage $V_{\mathrm{DS}(\mathrm{CL})}$ depending on the junction temperature T_{J} and the load current I_{L}.

5.5 Protection during Loss of Load or Loss of V_{S} Condition

In case of loss of V_{S} with charged line inductances, the maximum supply voltage has to be limited. It is recommended to use a diode and a Z-diode ($V_{\mathrm{Z} 1}+V_{\mathrm{D} 1}<16 \mathrm{~V}$, please refer to Figure 12).

Figure 12 External Component for BTC50010-1TAA Loss of V_{S} Protection
In case of loss of load with charged primary power line inductances, the maximum supply voltage also has to be limited. It is recommended to use a Z-diode ($V_{\mathrm{Z} 2}<28 \mathrm{~V}$) or V_{S} clamping power switches between V_{S} and Module Ground (please refer to Figure 13).

Figure 13 External Component for BTC50010-1TAA Loss of Load Protection
The 16 V Z-diode refers to the maximum $V_{\mathrm{S}(\mathrm{REV})}$ voltage of the chip. The 28 V Z-diode refers to the maximum supply voltage (V_{S}) of the chip.

5.6 Inverse Current Capability

In case of inverse current, meaning a voltage $V_{\text {OUT }}$ at the output higher than the supply voltage V_{S} (e.g. caused by a load operating as a generator), a current I_{L} will flow from output to V_{S} pin via the body diode of the power transistor (please refer to Figure 14). In case the IN pin is LOW ${ }^{1}$, the power DMOS is already activated and keeps ON. In case, the input goes from "H" to "L", the DMOS will be activated. Due to the limited speed of INV comparator, the output voltage slope needs to be limited. In case the IN pin is HIGH ${ }^{2}$, power DMOS will not be switched ON automatically. Current will flow through the intrinsic body diode. This power dissipation could cause heating effect, which has to be considered.

Figure 14 BTC50010-1TAA Inverse Current Circuitry

[^1]
5.7 Reverse Polarity Protection

In case of reverse polarity, the intrinsic body diode of the power DMOS causes power dissipation. To limit the risk of over temperature, the device provides Infineon ${ }^{\circledR}$ Reversave ${ }^{T M}$ function. The power in this intrinsic body diode is limited by turning the DMOS ON. The DMOS resistance is then equal to $R_{\text {DS(ON)_REV }}$ (please refer to Figure 18 and Figure 19).
Additionally, the current into the logic has to be limited. The device includes a R_{vS} resistor which limits the current in the diodes. To avoid over current in the R_{Vs} resistor, it is nevertheless recommended to use a R_{IN} resistor. Figure 15 shows a typical application. The recommended typical values for $R_{\text {IN }}$ is 100Ω.

Figure 15 BTC50010-1TAA Reverse Polarity Protection with External Components
Note: The $R_{V S}$ has a typical value of 80Ω at $25^{\circ} \mathrm{C}$. Refer to Figure 15 , the $R_{V S}$ and $R_{I N}$ build up a voltage divider to split up the supply voltage on BTC50010-1TAA, which protect the device during high voltage pulse (e.g. ISO pulse 3b).

5.8 Electrical Characteristics

Table 5 Electrical Characteristics: Power Stage
$V_{\mathrm{S}}=13.5 \mathrm{~V}, T_{\mathrm{J}}=25^{\circ} \mathrm{C}$, all voltages and currents refer to definitions in Figure 3 (unless otherwise specified).

Parameter	Symbol	Values			Unit	Note I Test Condition	Number
		Min.	Typ.	Max.			
Voltage drop	$V_{\text {DROP }}$	-	27	36	mV	$I_{\mathrm{L}}=30 \mathrm{~A}$	P_5.8.1
ON-state resistance	$R_{\text {DS(ON) }}$	-	0.9	1.2	$\mathrm{m} \Omega$	CP pin open Figure 16	P_5.8.2
ON-state resistance hot	$R_{\text {DS(ON)_HOT }}$	-	-	2.0	$\mathrm{m} \Omega$	$T_{\mathrm{J}}=150^{\circ} \mathrm{C}$ Figure 16	P_5.8.3
ON-state resistance in Infineon ${ }^{\circledR}$ Reversave ${ }^{\text {TM }}$	$R_{\text {DS(ON)_REV }}$	-	0.9	-	$\mathrm{m} \Omega$	$V_{\text {IN }}=0 \mathrm{~V}$	P_5.8.4
ON-state resistance during inverse operation	$R_{\text {DS(ON)_INV }}$	-	0.9	-	$\mathrm{m} \Omega$	$V_{\text {IN }}=0 \mathrm{~V}$	P_5.8.5
Supply current stand-by IN pins floating	$I_{\text {S_OFF }}$	-	3	12	$\mu \mathrm{A}$	Leakage current flow through OUT pin	P_5.8.6
Drain to source smart clamp voltage $V_{\mathrm{DS}(\mathrm{CL})}=V_{\mathrm{S}}-V_{\mathrm{OUT}}$	$V_{\text {DS(CL) }}$	28	-	60	V	$\begin{aligned} & I_{\mathrm{DS}}=50 \mathrm{~mA} \\ & T_{\mathrm{J}}=25^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \end{aligned}$	P_5.8.7

Table 6 Electrical Characteristics: Input Stage
$V_{\mathrm{S}}=13.5 \mathrm{~V}, T_{\mathrm{J}}=25^{\circ} \mathrm{C}$, all voltages and currents refer to definitions in Figure 3 (unless otherwise specified).

Parameter	Symbol	Values			Unit	Note / Test Condition	Number
		Min.	Typ.	Max.			
Input current in ON state IN pins Low	$I_{\text {IN_ON }}$	-	2	3	mA	$V_{\mathrm{S}}=18 \mathrm{~V}$	P_5.8.8

Table 7 Electrical Characteristics: Charge Pump
$V_{\mathrm{S}}=13.5 \mathrm{~V}, T_{\mathrm{J}}=25^{\circ} \mathrm{C}$, all voltages and currents refer to definitions in Figure 3 (unless otherwise specified).

Parameter	Symbol	Values			Unit	Note I Test Condition	Number
		Min.	Typ.	Max.			
Charge pump current during SWITCH ON	$I_{\text {CP_SW_ON }}$	0.7	2.2	-	mA	$\begin{aligned} & V_{\text {IN }}=0 \mathrm{~V} \\ & V_{\mathrm{CP}}=0 \mathrm{~V} \end{aligned}$	P_5.8.9
Charge pump current during SWITCH OFF	$I_{\text {CP_SW_OFF }}$	350	850	-	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {IN }}=V_{\mathrm{S}}=8 \mathrm{~V} \\ & V_{\mathrm{CP}}=V_{\mathrm{CP}} \mathrm{ON} \\ & V_{\mathrm{OUT}}=V_{\mathrm{S}} \end{aligned}$	P_5.8.10
Charge pump voltage	$V_{\text {CP_ON }}$	5	-	7	V	$V_{\mathrm{IN}}=0 \mathrm{~V}$ Figure 22	P_5.8.11

Table 8 Electrical Characteristics: Timing

$V_{\mathrm{S}}=13.5 \mathrm{~V}, T_{\mathrm{J}}=25^{\circ} \mathrm{C}$, all voltages and currents refer to definitions in Figure 3 (unless otherwise specified).

Parameter	Symbol	Values			Unit	Note $/$ Test Condition	Number
		Min.	Typ.	Max.			
Turn ON time		-	200	500	$\mu \mathrm{~s}$	See timing Figure 11 CP pin open	P_5.8.12
Turn OFF time	$t_{\text {OFF }}$	-	200	500	$\mu \mathrm{~s}$	See timing Figure 11 CP pin open	P_5.8.13
Turn ON delay time	$t_{\text {ON_delay }}$	-	80	150	$\mu \mathrm{~s}$	Figure 11 CP pin open	P_5.8.14
Turn OFF delay time	$t_{\text {OFF_delay }}$	-	180	300	$\mu \mathrm{~s}$	Figure 11 CP pin open	P_5.8.15

Figure 16 Typical $R_{\text {DS(ON) }}$ of BTC50010-1TAA vs. V_{s}

Figure 17 Typical $t_{\text {OFF }}$ of BTC50010-1TAA by Driving External Capacitance on CP Pin

Figure 18 Typical $R_{\text {DS(ON)_REV }}$ of BTC50010-1TAA vs. $V_{\mathrm{S}(\mathrm{REV})}$ with $V_{\text {IN }}=0 \mathrm{~V}$ in Reverse Mode for lower values of $V_{\text {S(REV) }}$

Figure 19 Typical $R_{\mathrm{DS}(\mathrm{ON})_{\text {_REV }}}$ of BTC50010-1TAA vs. $V_{\mathrm{S}(\mathrm{REV})}$ with $V_{\mathrm{IN}}=0 \mathrm{~V}$ in Reverse Mode for higher values of $V_{S(R E V)}$

6 Application Information

This chapter describes how the IC can be used in the application environment.
Note: The following application information is only given as a hint for the implementation of the device in the application and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

Figure 20 Application Diagram with BTC50010-1TAA

Table 9 Bill of material

Reference	Value	Purpose
T_{1}	NPN or MOSFET transistor	NPN (e.g. BCR133) or MOSFET (e.g. BSS123) transistor suitable for 5V voltage range controlled by control unit for driving the BTC50010-1TAA
R_{IN}	100Ω	Protection of BTC50010-1TAA and the microcontroller or control unit during over voltage and reverse polarity, which could be created by huge negative pulse (like ISO pulse 1)

Table $9 \quad$ Bill of material (cont'd)

Reference	Value	Purpose
Z_{1} and Z_{2}	Zener diodes	Protection of the BTC50010-1TAA during loss of load (correspond to fuse blow on fuse A) or loss of battery (correspond to fuse blow on fuse B) or against huge negative pulse (like ISO pulse 1), please refer to Figure 12 and Figure 13.
Z_{a}	Schottky diode	Protection of BTC50010-1TAA when driving an inductive load, stand alone (option B) or together with Z_{b} (option A).
and/or Z_{b}	Zener transient suppressor	Protection of BTC50010-1TAA when driving an inductive load, to be used together with Z_{a} in option A to accelerate the demagnetization process.
T_{2}	MOSFET transistor	Added optionally only for blocking the reverse current in free wheeling path, needed only for option A or B.
FUSE	e.g. 30 A ATO FUSE	Protection of the BTC50010-1TAA, wire harness and the load during short circuit. Depending on application requirement, either fuse A or fuse B will be placed.
$C_{\text {Vs }}$	100 nF	Improve EMC behavior (in layout, please place it close to the pin)
$C_{\text {OUT }}$	10 nF	Improve EMC behavior (in layout, please place it close to the pins)

6.1 Information for Application Combining PWM Mode with Fuse

The maximum of average power dissipation ${ }^{1)} P_{\text {loss }}$ is not allowed to be exceeded. Above all, the condition of $t_{\mathrm{DC}}>$ $t_{\text {fuseblow_max }}$ must be fulfilled. The $t_{\text {fuseblow_max }}$ is the maximum fuse blow time at certain fuse blow current on the l / t curve of the selected fuse for certain application. During short circuit, the load current could rise up to multiple of the nominal current value until fuse blow. The t_{DC} is defined in Figure 21.
$P_{\text {loss }}=\left(\right.$ switching_ON_energy + switching_OFF_energy $\left.+I_{\mathrm{L}}{ }^{2}{ }^{*} R_{\mathrm{DS}(\mathrm{ON})}{ }^{*} t_{\mathrm{DC}}\right) / t_{\text {period }}$

Figure 21 Definition of Average Power Dissipation of BTC50010-1TAA

[^2]
Application Information

6.2 Information for Driving Capability of Charge Pump Pin after Switch ON

Curve below shows typical driving capability of the charge pump, which has a dependency on gate voltage and battery voltage. It defines the relevant range of charge pump current for driving the gate capacity of the external MOSFET device and/or an external capacity C_{CP}.

Figure 22 Typical Charge Pump Current Driving Capability vs. Gate-Source Voltage ($V_{\text {CP }}$)

6.3 Further Application Information

- Please contact us for information regarding the pin FMEA
- For further information you may contact http://www.infineon.com/

$7 \quad$ Package Outlines

1) Typical

Metal surface min. $X=7.25, Y=6.9$
All metal surfaces tin plated, except area of cut.

Figure 23 PG-TO-263-7-8 (RoHS compliant)

Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb -free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

BTC50010-1TAA meets the MSL 1 (Moisture Sensitivity Level 1) according to IPC/JEDEC J-STD-020D and can withstand until $245^{\circ} \mathrm{C}$ peak reflow process.

For further information on alternative packages, please visit our website:

8 Revision History

Revision	Date	Changes
1.0	2011-12-21	Data Sheet released
1.1	2012-06-15	Page 3, Application: in the first bullet point, "inductive" removed Page 8, parameter $N_{\text {IND }}$ (P_4.1.10) removed Page 8, parameter N_{0} (P_4.1.09) renamed as P_4.1.10 Page 8, parameter I_{D} (P_4.1.9) added Page 9, parameter $E_{\mathrm{AR}}\left(\mathrm{P} _4.1 .12\right)$ removed Page 10, Figure 4 modified, $E_{\text {AR }}$ curve removed Page 10, Figure 5 removed Page 15, Chapter 5.1.2 title modified note added Page 19 ~ 20, Chapter 5.5 description modified Page 19, Figure 13 modified Page 20, Figure 14 and Figure 15 modified Page 21, Figure 16 modified Page 25, Figure 20 modified Page 26, Figure 21 modified Page 27, Figure 22 and Figure 23 modified Page 30, Figure 26 modified Page 30, Table 9: third row, first column, Z_{2} added; third row, third column, "inductive" removed, "please refer to Figure 13 and Figure 14"added. Page 31, Figure 27 and Table 10 added Page 31, Note "The following application information represents only as a recommendation for switching an inductive load. The function must be verified in the real application" added
1.2	2012-11-16	Page 8, Note "When driving resistive loads with remaining wire or parasitic inductances it must be ensured, that the device will not enter clamping mode during normal operating" added

Revision	Date	Changes
1.3	2015-01-26	Comprehensive rework of rev. 1.2; several figures have been renumbered Chapter 1: Overview Table 1 removed wording "over life time", updated various symbols Applications: first, third and fourth bullet: changed wording Features: Change of wording Description: Change of wording Chapter 3.2: Updated Footnote 2 Chapter 3.3:Figure 3 Change $V_{\text {OUTIN }}$ to $V_{\text {OUT-IN }}$ Chapter 4: Removed Note Chapter 4.1: P_4.1.3: changed figure reference P_4.1.6: Change $V_{\text {OUTIN }}$ to $V_{\text {OUT-IN }}$ P_4.1.8: removed cross reference P_4.1.10: removed from table P_4.1.11: removed from table P_4.1.18: Change symbol name to $V_{\text {ESD_out }}$ Table 2: Correction within footnote 5 Page 10: Footnote 1 modified Removed figure about Total Energy Capability for Switch Off Inductive Loads Reduced figures about Current Robustness Chapter 4.3 Page 13: modified text Chapter 5.1.2: Completely reworked subchapter Chapter 5.2: Change of wording, removed remarks about energy capability. Chapter 5.5: modified Figure 12, Figure 13 Chapter 5.6: modified text about negative load current, new footnote (1) about definition of LOW and HIGH state Chapter 5.7: modified Figure 15 Chapter 5.8 P_5.8.11 add max. value P_5.8.12, P_5.8.13, P_5.8.14, P_5.8.15: add typical value Figure 17 modified Figure 18, Figure 19 new generated out of former figure Chapter 6: Reworked text and note; removed figure 20, 21, 22, 23 list of required external components New Figure 20, updated Table 9 Removed former chapter 6.3 (now within Chapter 6) Chapter 6.1: Figure 21 and text modified

Edition 2015-02-06

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2012 Infineon Technologies AG

All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

[^0]: 1) Use test PCB with $2 \times 70 \mu \mathrm{~m}$ Cu layers and size of $54 \times 48 \times 1.5 \mathrm{~mm}$. Where applicable, thermal via array is placed under the device footprint on this PCB. BTC50010-1TAA on PCB has RthJA(2P) $=19.6 \mathrm{~K} / \mathrm{W}$ (referring to with 1 W power dissipation). PCB is vertical, keep constant environment temperature by indirect airflow of 61/s.
[^1]: 1) LOW means IN pin is pulled-down by external transistor or $I_{\mathrm{IN}}>0$
 2) $\mathrm{HIGH}(\mathrm{H})$ means $I_{\mathrm{IN}}=0$
[^2]: 1) In real application with $R_{\mathrm{thj}, \mathrm{a}}$ and T_{amb} the maximum allowed average power dissipation is defined: $P_{\text {loss }}=\left(150^{\circ} \mathrm{C}-T_{\mathrm{amb}}\right) /$ $R_{\mathrm{thj}, \mathrm{a}}$
